
OS Mon

version 1.5

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 OS Mon Reference Manual 1

1.1 os mon . 3

1.2 cpu sup . 5

1.3 disksup . 7

1.4 memsup . 9

1.5 nteventlog . 12

1.6 os sup . 14

iiiOS Mon

iv OS Mon

OS Mon Reference Manual

Short Summaries

� Application os mon [page 3] – OS Monitoring Application

� Erlang Module cpu sup [page 5] – A CPU Load Supervisor Process

� Erlang Module disksup [page 7] – A Disk Supervisor Process.

� Erlang Module memsup [page 9] – A memory Supervisor Process

� Erlang Module nteventlog [page 12] – This module implements a generic interface
to the WIndows NT event log. The module is specific to Windows NT and in some
ways replace the os sup module, which is highly Unix specific.

� Erlang Module os sup [page 14] – This module, together with some dedicated
UNIX processes, implements a message passing service from the Solaris operating
system to the error logger in the Erlang runtime system. The Solaris (SunOS 5.x)
messages are retrieved from the syslog-daemon, syslogd.

os mon

No functions are exported.

cpu sup

The following functions are exported:

� nprocs() -> UnixProcesses
[page 6] Get the number of UNIX processes running on this host

� avg1() -> SystemLoad
[page 6] Get the system load average from the last minute

� avg5() -> SystemLoad
[page 6] Get the system load average for the last five minutes

� avg15() -> SystemLoad
[page 6] Get the system load average for the last fifteen minutes

1OS Mon

OS Mon Reference Manual

disksup

The following functions are exported:

� get check interval() -> Time
[page 7] How often,in milliseconds, the disks are checked

� get disk data() -> [DiskData]
[page 7] Get data for the disks in the system

� get almost full threshold() -> integer()
[page 7] Specify how much disk space can be used by each disk or partition before
an alarm is sent

memsup

The following functions are exported:

� get check interval() -> Time
[page 10] How often (in milliseconds) memory is checked

� get memory data() -> MemData
[page 10] Get data for the memory in the system

� get system memory data() -> MemDataList
[page 10] Get system dependent memory data

� get procmem high watermark() -> integer()
[page 11] Specify how much memory can be allocated by one Erlang process
before an alarm is sent

� get sysmem high watermark() -> integer()
[page 11] Specify how much memory can be allocated by one Erlang process
before an alarm is sent

nteventlog

The following functions are exported:

� start(Identifier,MFA) -> Result
[page 12] Start the NT eventlog server

� start link(Identifier,MFA) -> Result
[page 13] Start and links the NT eventlog server

� stop() -> Result
[page 13] Stop the message passing service

os sup

The following functions are exported:

� start() -> Result
[page 14] Start the message passing service

� start link() -> Result
[page 14] Start and links the message passing service

� stop() -> Result
[page 15] Stop the message passing service

2 OS Mon

OS Mon Reference Manual os mon

os mon
Application

This section describes the os mon application in Erlang. The OS Monitoring application
provides the following services:

� cpu sup

� disksup

� memsup

� os sup

Configuration

The following configuration parameters are defined for the OS Monitoring application.
Refer to application(3) for more information about configuration parameters.

start disksup = bool() <optional> Specifies if disksup should be started. The
default is true.

start memsup = bool() <optional> Specifies if memsup should be started. The
default is true.

start os sup = bool() <optional> Specifies if os sup should be started. The
default is false.

disk space check interval = integer() <optional> Defines how often, in
minutes, the disksup process should check the disk space. The default is 30
minutes.

disk almost full threshold = float() <optional> Defines what percentage of
total disk space can be utilized before the disk almost full alarm is set. The
default is 0.80 (80%).

memory check interval = integer() <optional> Defines how often, in minutes,
the memsup process should check the memory. The default is one minute.

system memory high watermark = float() <optional> Defines what percentage of
the available system memory can be allocated before the corresponding alarm is
set. The default is 0.8 (80%).

process memory high watermark = float() <optional> Defines what percentage
of the available system memory can be allocated by one Erlang process before the
corresponding alarm is set. The default is 0.05 (5%).

os sup own = string() Defines which directory contains the backup copy and the
Erlang specific configuration files for syslogd, and the named pipe to receive the
messages from syslogd.
Usually, this parameter has the value “/etc”.

3OS Mon

os mon OS Mon Reference Manual

os sup syslogconf = string() Defines the full file name of the configuration file
for syslogd.
Usually, this parameter has the value “/etc/syslog.conf”.

os sup errortag = atom() Defines the atom with which to tag messages received
from syslogd before forwarding them to the error logger in the Erlang runtime
system.

SNMP MIBs

The following MIBs are defined in OS MON:

OTP-OS-MON-MIB This MIB contains objects for instrumentation of disk, memory
and cpu usage of the nodes in the system.

The MIB is stored in the mibs directory. It is defined in SNMPv2 SMI syntax. An
SNMPv1 version of the mib is delivered in the mibs/v1 directory.

The compiled MIB is located under priv/mibs, and the generated .hrl file under the
include directory. To compile a MIB that IMPORTS the OTP-OS-MON-MIB, give the
option fil, ["os mon/priv/mibs"]g to the MIB compiler.

If the MIB should be used in a system, it should be loaded into an agent with a call to
os mon mib:init(Agent), where Agent is the Pid or registered name of an SNMP
agent. Use os mon mib:stop(Agent) to unload the MIB. The implementation of this
MIB uses Mnesia to store a cache with data needed. This means that Mnesia must run if
this implementation of the MIB should be used. It also use functions defined for the
OTP-MIB, thus that MIB must be loaded as well.

See Also

cpu sup(3) [page 5], memsup(3) [page 9], disksup(3) [page 7], os sup(3) [page 14],
application(3), snmp(6)

4 OS Mon

OS Mon Reference Manual cpu sup

cpu sup
Erlang Module

cpu sup is part of the os mon application and all configuration parameters are defined in
the reference documentation for the os mon application.

cpu sup is a process which supervises the CPU load in the operating system. The load is
obtained via the Solaris kernel statistics library, kstat. The same underlying mechanism
is used by many other well known UNIX programs, such as rup, top and xload.

The Solaris kernel continuously maintains a large number of statistics, of which the
current load values are just a few. Whenever an Erlang process requests a load
measurement, cpu sup just reads the latest statistical values.

The Solaris kernel load values are proportional to how long time a runnable UNIX
process has to spend in the run queue before it is scheduled. Accordingly, higher values
mean more system load. The returned value divided by 256 produces the figure
displayed by rup and top. What is displayed as 2.00 in rup, is displayed as as load up to
the second mark in xload.

For example, rup displays a load of 128 as 0.50, and 512 as 2.00.

If the user wants to view load values as percentages of machine capacity, then this way
of measuring presents a problem, because the load values are not restricted to a fixed
interval. In this case, the following simple mathematical transformation can produce the
load value as a percentage:

PercentLoad = 100 * (1 - D/(D + Load))

D determines which load value should be associated with which percentage. Choosing D
= 50 means that 128 is 60% load, 256 is 80%, 512 is 90%, and so on.

Another way of measuring system load is to divide the number of busy CPU cycles by
the total number of CPU cycles. This method is used by some systems, including
Windows NT for example, and it produces values in the 0-100 range immediately.
However, this method hides the fact that a machine can be more or less saturated.

A server which receives just enough requests to never become idle would score 100%
with this measurement method. If the server receives 50% more requests, it would still
score 100%. With the measurement method used in this module, the load would
increase from 80% to 87% when calculated with the percentage formula shown
previously.

5OS Mon

cpu sup OS Mon Reference Manual

Exports

nprocs() -> UnixProcesses

Types:

� UnixProcesses = integer()

Returns the number of UNIX processes running on this machine. This is a crude way of
measuring the system load, but it may be of interest in some cases.

avg1() -> SystemLoad

Types:

� SystemLoad = integer()

Returns the average system load in the last 60 seconds, as described above. 0 represents
no load, 256 represents the load reported as 1.00 by rup.

avg5() -> SystemLoad

Types:

� SystemLoad = integer()

Returns the average system load from the last 300 seconds, as described above. 0
represents no load, 256 represents the load reported as 1.00 by rup.

avg15() -> SystemLoad

Types:

� SystemLoad = integer()

Returns the average system load from the last 900 seconds, as described above. 0
represents no load, 256 represents the load reported as 1.00 by rup.

6 OS Mon

OS Mon Reference Manual disksup

disksup
Erlang Module

disksup is part of the os mon application and all configuration parameters are defined in
the reference documentation for the os mon application.

disksup is a process which supervises the available disk space in the system. Once
every disk space check interval minutes, the disks are checked and an alarm is
generated for each disk which uses more than the disk almost full threshold of
available space.

On UNIX All (locally) mounted disks are checked, including the swap disk if it is
present.

On WIN32 All logical drives of type “FIXED DISK” are checked.

The disksup process defines one alarm which it sends using
alarm handler:set alarm(Alarm). Alarm is defined as follows:

ffdisk almost full, MountedOng, []g This alarm is sent when a disk uses more
than disk almost full threshold of its available disk space, and it is cleared
automatically when disksup observes that the disk space is back to normal.

Exports

get check interval() -> Time

Types:

� Time = integer()

Time interval, in milliseconds, which defined how often the disks are checked.

get disk data() -> [DiskData]

Types:

� DiskData = fId, KByte, Capacityg
� Id = string()
� KByte = integer()
� Capacity = integer()

Gets data for the system disks or partitions. Id is a string that identifies the disk or
partition. KByte is the total size of the disk or partition in kbytes. Capacity is the
percentage of disk space used.

get almost full threshold() -> integer()

Threshold as a percentage of the available disk space. It specifies how much disk space
can be used by each disk or partition before an alarm is sent.

7OS Mon

disksup OS Mon Reference Manual

See Also

alarm handler(3), os mon(3)

8 OS Mon

OS Mon Reference Manual memsup

memsup
Erlang Module

memsup is part of the os mon application and all configuration parameters are defined in
the reference documentation for the os mon application.

memsup is a process which supervises the memory usage for the system and for
individual processes, as follows:

� If more than system memory high watermark of available system memory is
allocated, as reported by the underlying operating system, the alarm
system memory high watermark is set.

� If any Erlang process in the system has allocated more than
process memory high watermark of total system memory, the alarm
process memory high watermark is set.

The total system memory reported under UNIX is the number of physical pages of
memory times the page size, and the available memory is the number of available
physical pages times the page size. This is a reasonable measure as swapping should be
avoided anyway, but the task of defining total memory and available memory is difficult
because of virtual memory and swapping.

The memsup process defines two alarms which are set by the
alarm handler:set alarm(Alarm) function. Alarm is defined as:

fsystem memory high watermark, []g. This alarm is set when the used system
memory exceeds system memory high watermark of the total available memory.

fprocess memory high watermark, Pidg. This alarm is set when an Erlang process
exceeds process memory high watermark of the total available memory.

These alarms are cleared automatically when the alarm cause is no longer valid.

There is also a interface to system dependent memory data,
get system memory data/0. The output is highly dependent on the underlying
operating system and the interface is targeted primarily for systems without virtual
memory (e.g. VxWorks). The output on other systems is however still valid, although
sparse.

A call to get system memory data/0 is more costly than a call to get memory data/0
as data is collected synchronously when this function is called.

9OS Mon

memsup OS Mon Reference Manual

Exports

get check interval() -> Time

Types:

� Time = integer()

A time interval, in milliseconds, which defines how often memory is checked. The
get system memory data() function is in no way affected by this interval.

get memory data() -> MemData

Types:

� MemData = fTotalMemorySize, AllocatedBytes, fLargestPid, PidAllocatedBytesgg
� TotalMemorySize = integer()
� AllocatedBytes = integer()
� LargestPid = pid()
� PidAllocatedBytes = integer()

Returns data about the memory in the system. LargestPid is the Pid of the largest
Erlang process in the system. PidAllocatedBytes is the amount of memory the
LargestPid has allocated.

get system memory data() -> MemDataList

Types:

� MemDataList = [TaggedValue ...]
� TaggedValue = fTag, Valueg
� Value = integer()
� Tag = atom()

Gets system dependent memory data. The result is returned as a list containing tagged
tuples, where the tag can be one of the following:

total memory The total amount of memory (in bytes) available to the Erlang emulator,
allocated and free. May or may not be equal to the amount of memory configured
in the system.

free memory The amount of free memory available to the Erlang emulator for
allocation.

system total memory The amount of memory available to the whole operating system.
This may well be equal to total memory but not necessarily.

largest free The size of the largest contiguous free memory block available to the
Erlang emulator.

number of free The number of free blocks available to the Erlang runtime system.
This gives a fair indication of how fragmented the memory is.

As with get memory data(), the values on Unix-like systems indicate the amount of
physical memory that is configured and free. The largest free and number of free
tags are currently only returned on a VxWorks system.

All memory sizes are presented as number of bytes.

10 OS Mon

OS Mon Reference Manual memsup

get procmem high watermark() -> integer()

Threshold as a percentage of the total available system memory. It specifies how much
memory can be allocated by one Erlang process before an alarm is sent.

get sysmem high watermark() -> integer()

Threshold as a percentage of the total available system memory. It specifies how much
memory can be allocated by the system before an alarm is sent.

See Also

alarm handler(3), os mon(3)

11OS Mon

nteventlog OS Mon Reference Manual

nteventlog
Erlang Module

The nteventlog module is a server which will inform your erlang application of all
events written to the Windows NT event log. This is implemented with a port program
that monitors the eventlog file and reacts whenever a new record is written to the log.

Your Erlang application is informed of each record in the eventlog through a user
supplied callback function (an “MFA”). This function can do whatever filtering and
formatting is necessary and then deploy any type of logging suitable for your
application. When the user supplied function returns, the log record is regarded as
accepted and the port program updates its persistent state so that the same event will
not be sent again (as long ar the server is started with the same identifier).

When the service is started, all events that arrived to the eventlog since the last
accepted message (for the current identifier) are sent to the user supplied function. This
can make your application aware of operating system problems that arise when your
application is not running (like the problem that made it stop the last time). The
interpretation of the log records is entierly up to the application.

When starting the service, a identifier is supplied, which should be reused whenever the
same application (or node) wants to start the server. The identifier is the key for the
persistent state telling the server which events are delivered to your application. As long
as the same identifier is used, the same eventlog record will not be sent to Erlang more
than once (with the exception of when grave system failures arise, in which case the last
records written before the failure may be sent to Erlang more again after reboot).

If the event log is configured to wrap around automatically, records that has arrived to
the log and been overwritten when the server was not running are lost. The server
however detects this state and loses no records that are not overwritten.

Exports

start(Identifier,MFA) -> Result

Types:

� Identifier = string() | atom()
� MFA = fMod, Func, Argsg
� Mod = atom()
� Func = atom()
� Args = list()
� Result = fok, Pidg | ferror, falready started, Pidgg
�

� LogData = fTime,Category,Facility,Severity,Messageg
� Time = fMegaSecs, Secs, Microsecsg

12 OS Mon

OS Mon Reference Manual nteventlog

� MegaSecs = integer()
� Secs = integer()
� Microsecs = integer()
� Category = string()
� Facility = string()
� Severity = string()
� Message = string()

This function starts the server. The supplied function should take at least one argument
of type LogData, optionally followed by the arguments supplied in Args.

The LogData tuple contains:

1. The message Time is represented as by the erlang:now() bif.
2. The message Category which usually is one of the strings “System”, “Application”

or “Security”. Note that the NT eventlog viewer has another notion of category,
which in most cases is totally meaningless and therefor not imported into erlang.
What this module calls a category is one of the main three types of events occuring
in a normal NT system.

3. The message Facility is the source of the event, usually the name of the
application that generated it. This could be almost any string. When matching
events from certain applications, the version number of the application may have
to be accounted for. What this module calls facility, the NT event viewer calls
“source”.

4. The message Severity is one of the strings “Error”, “Warning”, “Informational”,
“Audit Success”, “Audit Faulure” or, in case of a currently unknown Windows NT
version “Severity Unknown”.

5. The Message string is formatted exactly as it would be in the NT eventlog viewer.
Binary data is not imported into erlang.

start link(Identifier,MFA) -> Result

Types:

� Identifier = string() | atom()
� MFA = fMod, Func, Argsg
� Mod = atom()
� Func = atom()
� Args = list()
� Result = fok, Pidg | ferror, falready started, Pidgg

Behaves as start/2 but also links the server.

stop() -> Result

Types:

� Result = stopped

Stops a started server, usually only used during development. The server does not have
to be shut down gracefully to maintain its state.

See Also

os sup(3) [page 14] and the Windows NT documentation.

13OS Mon

os sup OS Mon Reference Manual

os sup
Erlang Module

This module starts a server written in Erlang (and later referenced only as server), which
receives messages from the Solaris operating system. The messages are tagged with an
atom and subsequently forwarded to the error logger in the Erlang runtime system. If
the atom is std error, the messages are handled the same way as the bulk of internal
error messages in the Erlang runtime system.

This module, together with the dedicated UNIX-processes, makes a number of
reconfigurations to the Solaris operating system when the service is enabled. These
configurations include:

� the installation of a new configuration file for syslogd

� the creation of a named pipe

� the start of a port program.

As a consequence of these modifications:

1. syslogd writes messages of interest to the named pipe

2. the port program reads messages from the named pipe and forwards them to the
server

3. the server delivers them to the error logger of the Erlang runtime system.

When the service is disabled, the original configuration is restored.

Exports

start() -> Result

Types:

� Result = fok, Pidg | ferror, falready started, Pidgg
� Pid = pid()

This function starts the server together with its dedicated UNIX processes. It returns
fok, Pidg if the start was successful, otherwise ferror, already startedg.

start link() -> Result

Types:

� Result = fok, Pidg | ferror, falready started, Pidgg
� Pid = pid()

14 OS Mon

OS Mon Reference Manual os sup

This function starts the server together with its dedicated UNIX processes. The caller is
also linked to the server. It returns fok, Pidg if the start was successful, otherwise
ferror, already startedg .

stop() -> Result

Types:

� Result = ok | not started

This function stops the server and restores the original configuration of the operating
system. It returns ok if successful, otherwise not started.

Operation

1. This module is normally started by the supervisor and supervisor bridge behaviours.
Consequently, the user should not call the functions described above.

2. This module cannot be run in multiple instances on the same hardware. Special
care must be taken if two or more Erlang nodes execute on the same hardware
platform so that only one node uses this service in any one instance.

3. This module requires that a number of actions be been taken prior to starting it.
These actions must be performed with root privileges on SunOS 5 and include
change of ownership and file privileges of an executable binary file, and copying
and creating a modified copy of the configuration file for the syslog-daemon
syslogd. In addition, a the following configuration parameters must be set.

(a) implement the server using gen server.
(b) implement protection against starting two or more instances of the service on

the same hardware platform.

See also

� os mon(3), error logger(3), Installation Guide for your platform.

� syslogd(1M), syslog.conf(4) in the Solaris documentation.

15OS Mon

os sup OS Mon Reference Manual

16 OS Mon

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

avg1/0
cpu sup , 6

avg15/0
cpu sup , 6

avg5/0
cpu sup , 6

cpu sup
avg1/0, 6
avg15/0, 6
avg5/0, 6
nprocs/0, 6

disksup
get_almost_full_threshold/0, 7
get_check_interval/0, 7
get_disk_data/0, 7

get_almost_full_threshold/0
disksup , 7

get_check_interval/0
disksup , 7
memsup , 10

get_disk_data/0
disksup , 7

get_memory_data/0
memsup , 10

get_procmem_high_watermark/0
memsup , 11

get_sysmem_high_watermark/0
memsup , 11

get_system_memory_data/0
memsup , 10

memsup
get_check_interval/0, 10

get_memory_data/0, 10
get_procmem_high_watermark/0, 11
get_sysmem_high_watermark/0, 11
get_system_memory_data/0, 10

nprocs/0
cpu sup , 6

nteventlog
start/2, 12
start_link/2, 13
stop/0, 13

os sup
start/0, 14
start_link/0, 14
stop/0, 15

start/0
os sup , 14

start/2
nteventlog , 12

start_link/0
os sup , 14

start_link/2
nteventlog , 13

stop/0
nteventlog , 13
os sup , 15

17OS Mon

18 OS Mon

